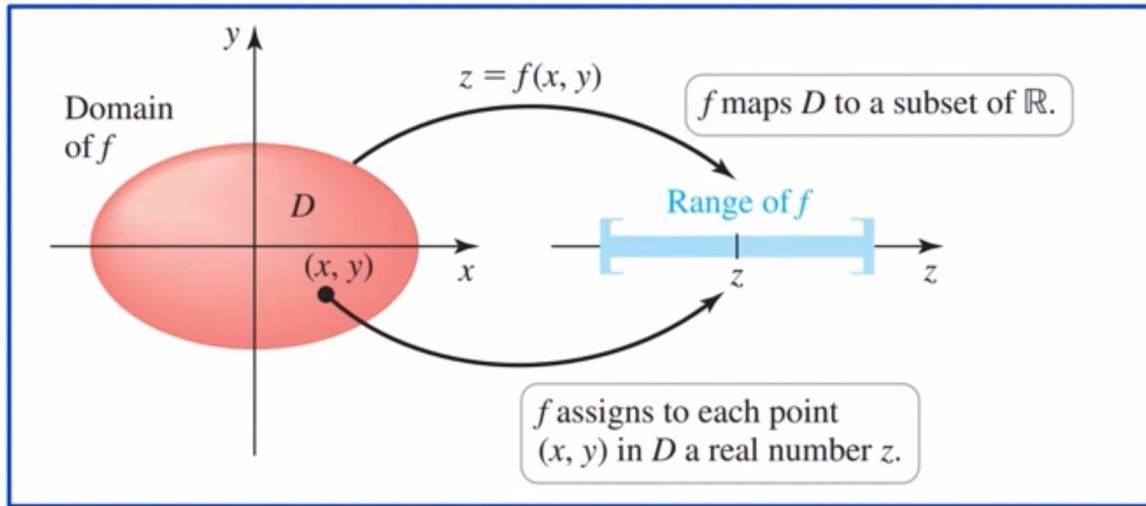


15.1 Graphs and Level Curves

Functions of Two Variables

DEFINITION Function, Domain, and Range with Two Independent Variables

A **function** $z = f(x, y)$ assigns to each point (x, y) in a set D in \mathbb{R}^2 a unique real number z in a subset of \mathbb{R} . The set D is the **domain** of f . The **range** of f is the set of real numbers z that are assumed as the points (x, y) vary over the domain.



E.g.) Find the domain

$$f(x, y) = \frac{1}{\sqrt{x^2 + y^2 - 25}}.$$

$$\begin{aligned} \text{Ex: } f(4, 5) &= \frac{1}{\sqrt{4^2 + 5^2 - 25}} \\ &= \frac{1}{\sqrt{16 + 25 - 25}} \\ &= \frac{1}{\sqrt{16}} = \frac{1}{4} \in \mathbb{R}. \end{aligned}$$

$(4, 5)$ is in the domain.

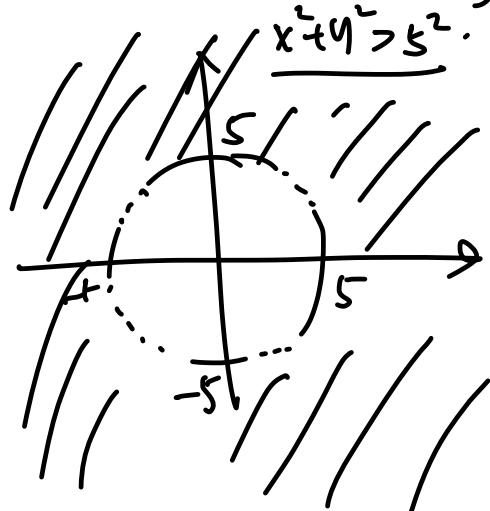
$$\begin{aligned} \text{Ex: } f(3, 4) &= \frac{1}{\sqrt{3^2 + 4^2 - 25}} \\ &= \frac{1}{\sqrt{9 + 16 - 25}} = \frac{1}{\sqrt{25 - 25}} = \frac{1}{\sqrt{0}}. \end{aligned}$$

$(3, 4)$ is not in the domain

$$\text{Domain: } x^2 + y^2 - 25 > 0.$$

$$\begin{aligned} \text{① } \sqrt{x^2 + y^2 - 25} &> 0 \\ \text{② } \frac{1}{\sqrt{x^2 + y^2 - 25}} &\neq 0. \end{aligned} \quad \left. \begin{array}{l} x^2 + y^2 - 25 > 0 \\ x^2 + y^2 > 25 \end{array} \right\}$$

$$D = \{(x, y) : x^2 + y^2 - 25 > 0\}.$$



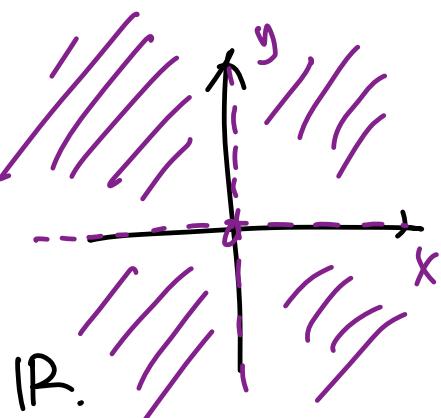
eg) $g(x, y) = \frac{1}{xy}$.

$$g(1, 1) = \frac{1}{1 \cdot 1} = 1 \in \mathbb{R}$$

$(1, 1) \in \text{Domain.}$

$$g(1, 0) = \frac{1}{1 \cdot 0} = \frac{1}{0} \notin \mathbb{R}.$$

$(1, 0) \notin \text{Domain.}$



Range:
 $\frac{1}{xy}$ can be anything but can't be zero.

$$\mathbb{R} = \mathbb{R} \setminus \{0\}$$

$$= \{z : z \neq 0\}$$

~~Domain~~

Domain: we can't have 0 on the denom.

$$\text{so, } xy \neq 0 \Rightarrow x \neq 0 \text{ and } y \neq 0$$

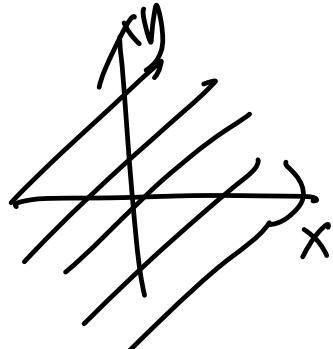
$$D = \{g(x, y) \mid x \neq 0 \text{ and } y \neq 0\}.$$

$$\text{E.g.) } z = 4x^2 + 4y^2 \\ = f(x, y).$$

Domain: x and y can be anything

z will always be defined.

so, \mathbb{R}^2 (meaning any x, y in \mathbb{R}).



Range:

$$x^2 \geq 0$$

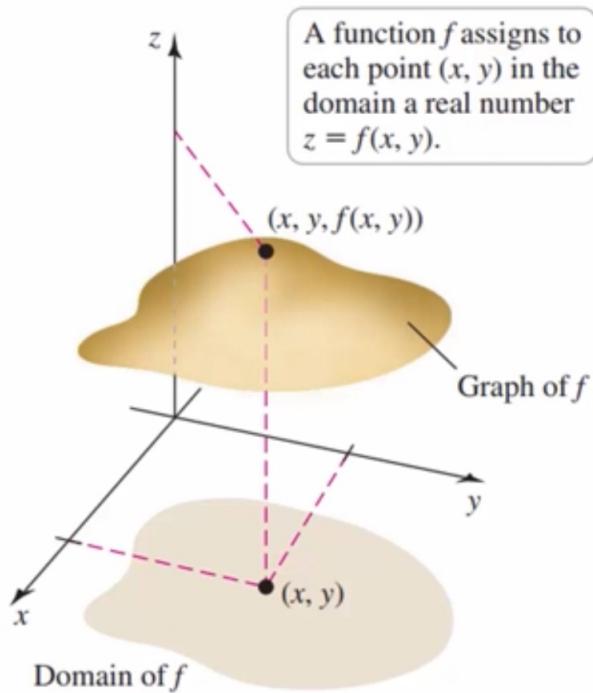
$$y^2 \geq 0$$

$$4x^2 + 4y^2 \geq 0.$$

meaning 0 or greater.

$$R = \{z : z \geq 0\}$$

Graphs of functions of two variables



Level Curves

For a function of two variables $f(x, y)$ a level curve is the set of points (x, y) in the xy -plane where $f(x, y)$ is equal to a constant z_0 .

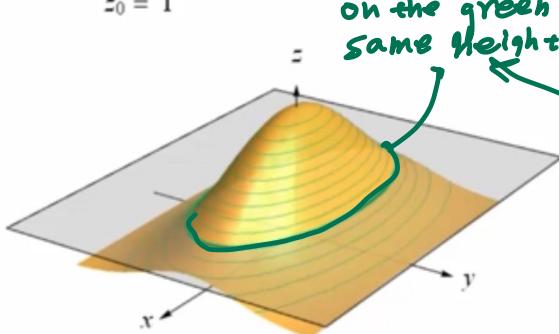
z_0

- +

show plane

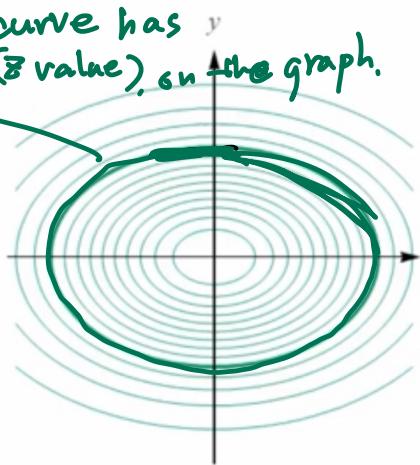
show grids

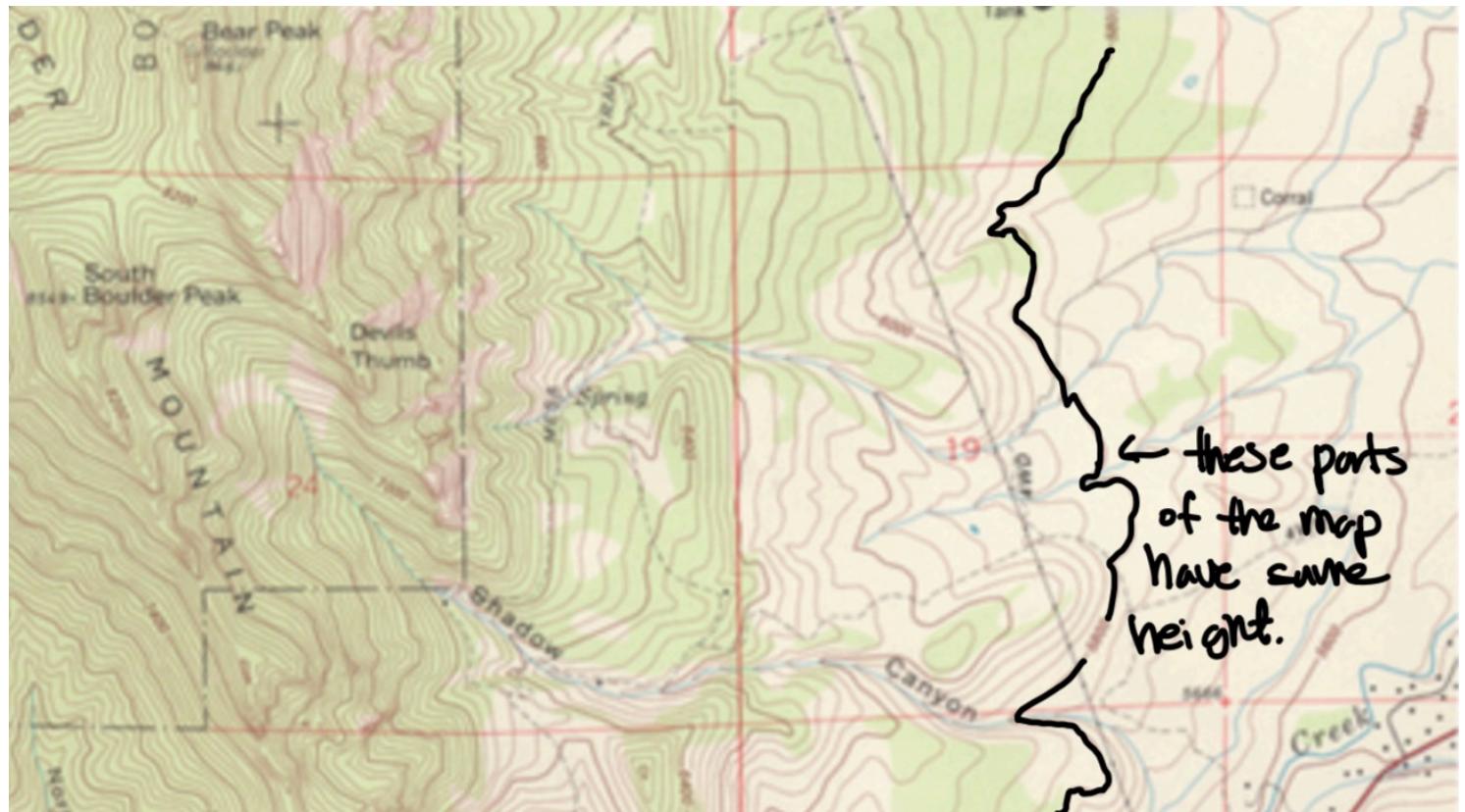
$z_0 = 1$



Level curves of f

all the point
on the green curve has
same height + (z value), on the graph.





E.g. Sketch graph.

$$p(x, y) = \sqrt{x^2 + y^2}.$$

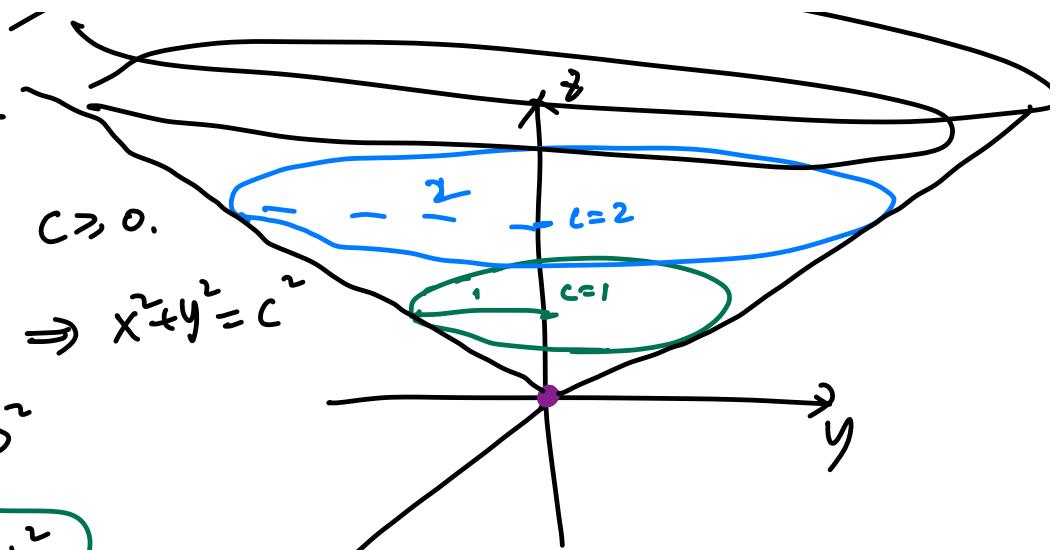
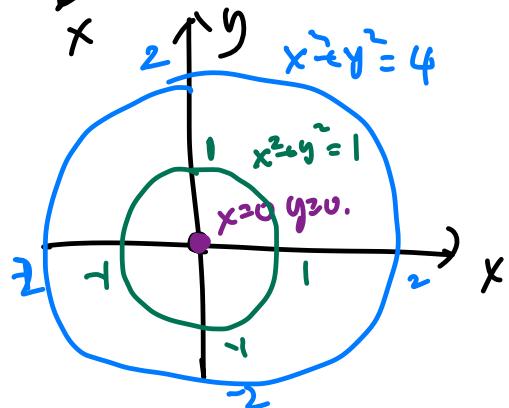
Level curves: $C \geq 0$.

$$\sqrt{x^2 + y^2} = C \Rightarrow x^2 + y^2 = C^2$$

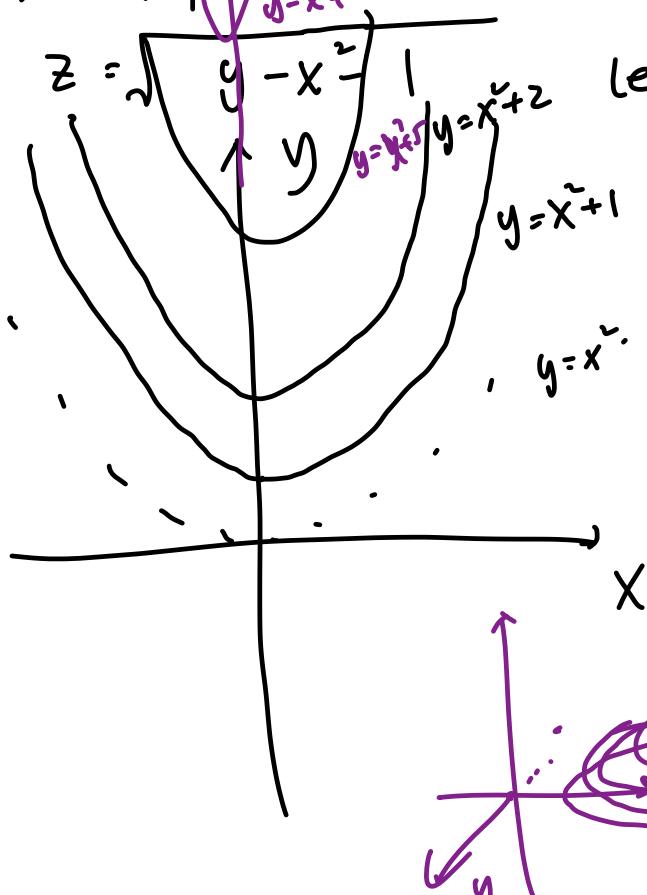
$$C=0: x^2 + y^2 = 0^2$$

$$C=1: x^2 + y^2 = 1^2$$

$$C=2: x^2 + y^2 = 2^2$$



E.9.) Graph several level curves



$$\text{Level curves } \sqrt{y - x^2 - 1} = c \quad (c \geq 0),$$

$$y - x^2 - 1 = c^2$$

$$y = x^2 + 1 + c^2$$

$$c = 0 : \underline{\underline{y = x^2 + 1}}$$

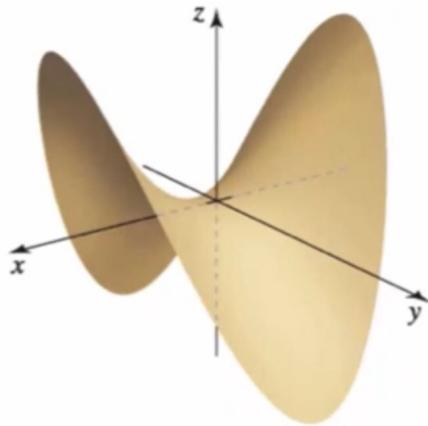
$$c = 1 : y = x^2 + 1 + 1 = x^2 + 2.$$

$$c = 2 : y = x^2 + 1 + 4 = x^2 + 5$$

$$c = 3 : y = x^2 + 1 + 9 = x^2 + 10$$

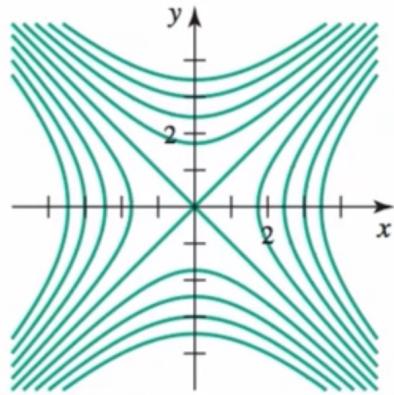
Level Surface

Need 3 dimensions to plot the graph of
 $z = f(x, y)$



Need 4 dimensions to plot the graph of
 $w = f(x, y, z)$

Need 2 dimensions to plot level curves of
 $z = f(x, y)$



Need 3 dimensions to plot level **surfaces** of
 $w = f(x, y, z)$

Functions of More Than Two Variables

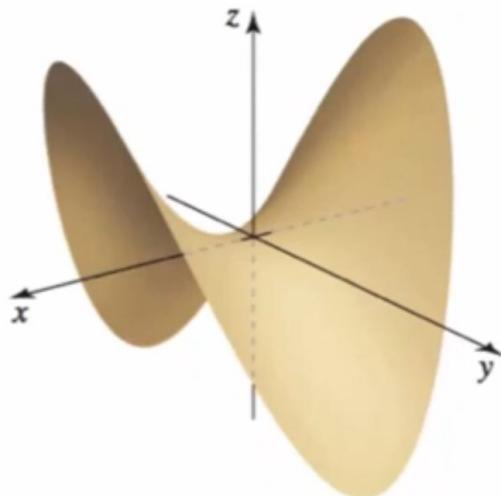
- Three variables: $w = f(x, y, z)$
- n variables: $x_{n+1} = f(x_1, x_2, \dots, x_n)$

DEFINITION Function, Domain, and Range with n Independent Variables

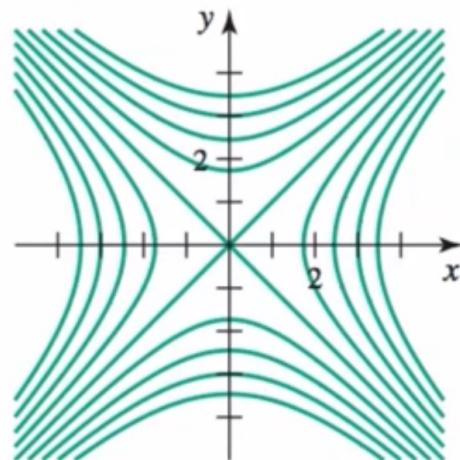
The **function** $x_{n+1} = f(x_1, x_2, \dots, x_n)$ assigns a unique real number x_{n+1} to each point (x_1, x_2, \dots, x_n) in a set D in \mathbb{R}^n . The set D is the **domain** of f . The **range** is the set of real numbers x_{n+1} that are assumed as the points (x_1, x_2, \dots, x_n) vary over the domain.

Level Surface

Need 3 dimensions to plot the graph of
 $z = f(x, y)$



Need 2 dimensions to plot level curves of
 $z = f(x, y)$



Need 4 dimensions to plot the graph of
 $w = f(x, y, z)$

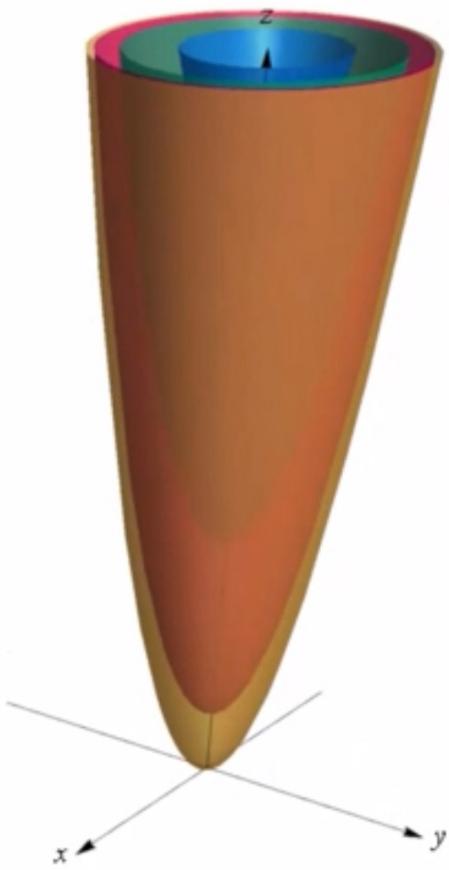
$$x^2 + y^2 + z^2 = 1$$

Need 3 dimensions to plot level **surfaces** of
 $w = f(x, y, z)$

Level Surface

For a function of three variables $f(x, y, z)$ a level surface is the set of points (x, y, z) in xyz -space where $f(x, y, z)$ is equal to a constant w_0 .

e.g

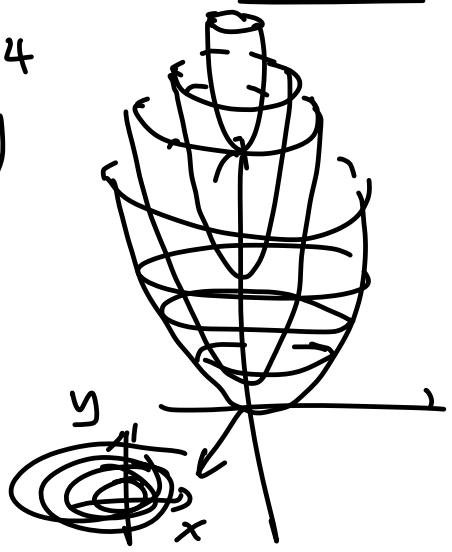


Level surface.

$$w = f(x, y, z), = \sqrt{z - x^2 - 2y^2} = 9$$

level surface

$$\begin{aligned} w=0 \quad \sqrt{z - x^2 - 2y^2} = 0 &\Rightarrow z - x^2 - 2y^2 = 0 \\ \frac{w=1}{w=2} \quad z = x^2 + 2y^2 + 1 &\Rightarrow z = x^2 + 2y^2 + 4 \\ w=3, \quad z = x^2 + 2y^2 + 9 &\end{aligned}$$



Eg. Find the domain

$$f(x, y, z) = \frac{x^2 - (y+z)x + yz}{x-y(x-z)} \neq 0.$$

Denominator $\neq 0$

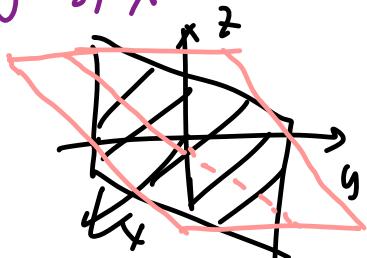
$$(x-y)(x-z) \neq 0$$

$$x-y \neq 0 \text{ and } x-z \neq 0.$$

$$x \neq y \text{ and } x \neq z.$$

$$D = \{(x, y, z) : x \neq y, x \neq z\}$$

$$\begin{aligned} & x^2 - (y+z)x + yz \\ & \cancel{x} \quad \cancel{(y+z)} \quad \cancel{x} + yz \\ & \cancel{x} \quad \cancel{y} \quad \cancel{-z} \quad (x-y) \\ & \quad \quad \quad (x-z) \\ & -z x - y x \\ & = -(y+z)x \end{aligned}$$

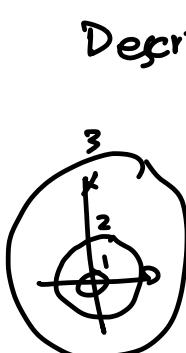


$$\text{E.g. } w = f(x, y, z) = x^2 + y^2 - z$$

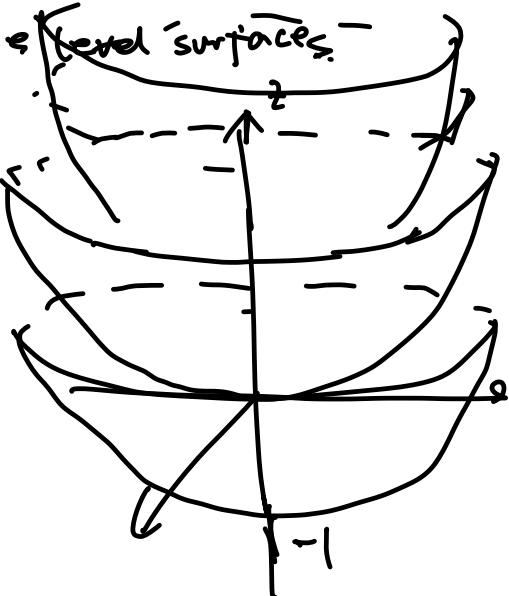
$$\underline{w=0} : \quad 0 = x^2 + y^2 - z \\ z = x^2 + y^2$$

$$\underline{w=1} : \quad 1 = x^2 + y^2 - z \\ z = x^2 + y^2 - 1$$

$$w = -1 : \quad -1 = x^2 + y^2 - z \\ z = x^2 + y^2 + 1$$



Describes level surfaces -



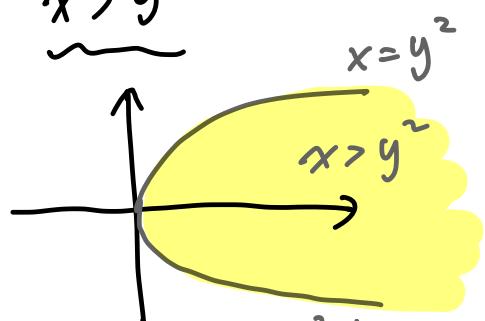
Level surfaces : Paraboloid of the form

$$z = x^2 + y^2 + c.$$

$$z = \ln(x - y^2)$$

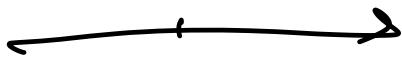
Domain: $x - y^2 > 0$

$$x > y^2$$



$$D = \{(x, y) : x > y^2\}$$

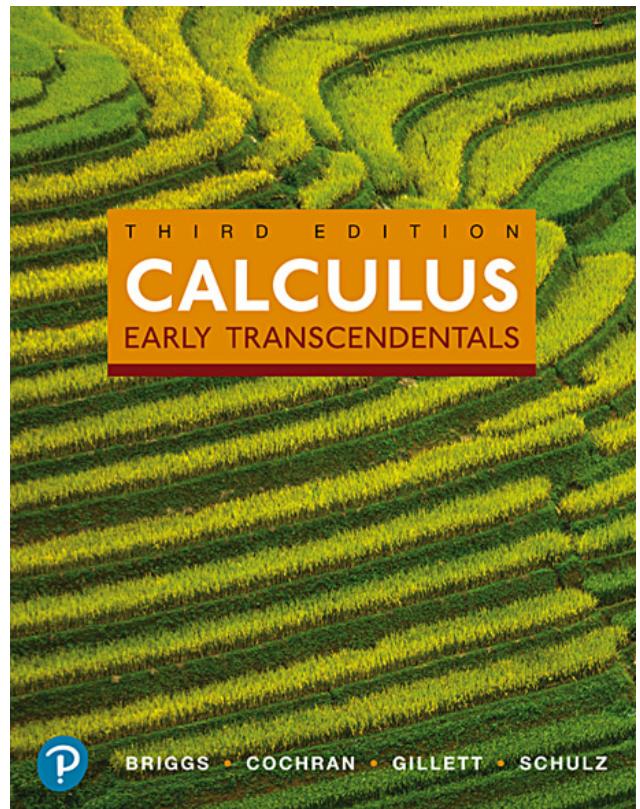
Range: $z \in \mathbb{R}$



$$x > 0.$$

15.2

Limits and Continuity



$f(x)$.

$$\lim_{x \rightarrow a} f(x) = L.$$

$\textcircled{1} \quad \text{if } \varepsilon > 0 \quad \textcircled{2} \quad \text{there exists a corresponding number } \delta > 0$
for any such that. $|f(x) - L| < \varepsilon$. $0 < |x - a| < \delta$
s.t.

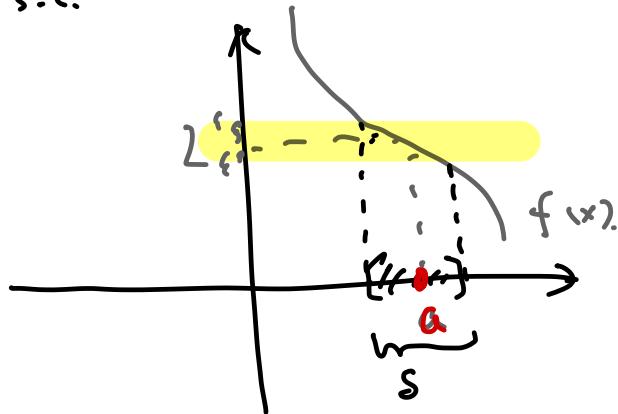
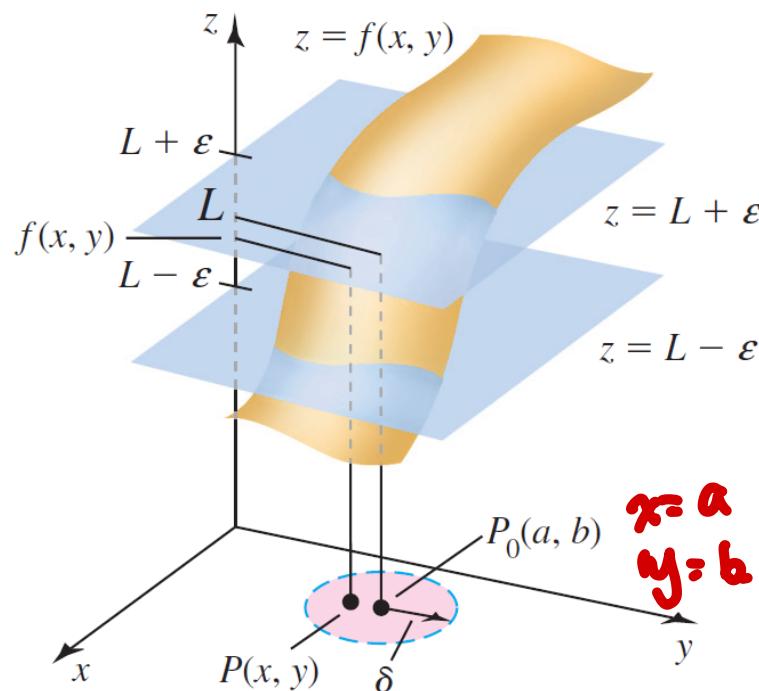


Figure 15.20



$f(x, y)$ is between $L - \varepsilon$ and $L + \varepsilon$
whenever $P(x, y)$ is within δ of P_0 .

DEFINITION Limit of a Function of Two Variables

The function f has the **limit** L as $P(x, y)$ approaches $P_0(a, b)$, written

$$\lim_{(x,y) \rightarrow (a,b)} f(x, y) = \lim_{P \rightarrow P_0} f(x, y) = L,$$

if, given any $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x, y) - L| < \varepsilon$$

whenever (x, y) is in the domain of f and

$$0 < |PP_0| = \sqrt{(x - a)^2 + (y - b)^2} < \delta.$$

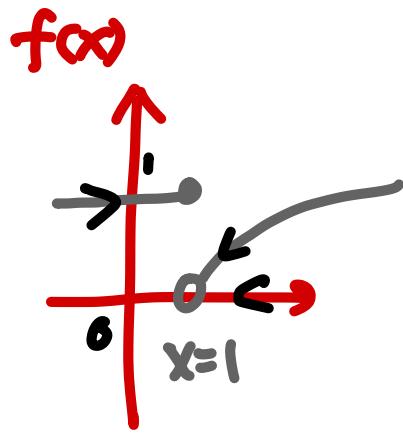
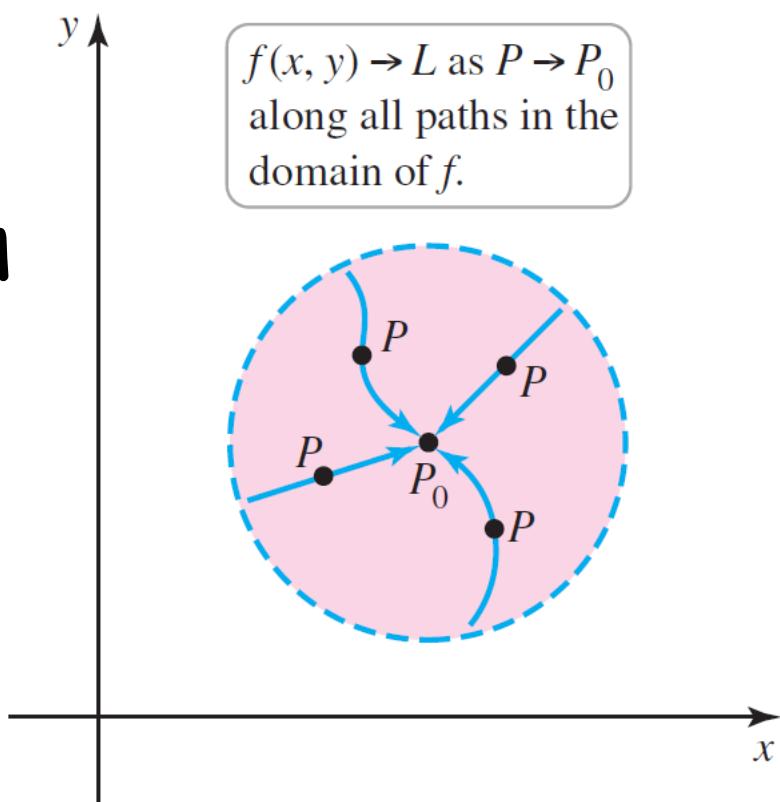


Figure 15.21

$f(x, y) \rightarrow L$ as $P \rightarrow P_0$
along all paths in the
domain of f .



THEOREM 15.1 Limits of Constant and Linear Functions

Let a , b , and c be real numbers.

1. Constant function $f(x, y) = c$: $\lim_{(x, y) \rightarrow (a, b)} c = c$
2. Linear function $f(x, y) = x$: $\lim_{(x, y) \rightarrow (a, b)} x = a$
3. Linear function $f(x, y) = y$: $\lim_{(x, y) \rightarrow (a, b)} y = b$

THEOREM 15.2 Limit Laws for Functions of Two Variables

Let L and M be real numbers and suppose $\lim_{(x, y) \rightarrow (a, b)} f(x, y) = L$ and

$\lim_{(x, y) \rightarrow (a, b)} g(x, y) = M$. Assume c is a constant, and $n > 0$ is an integer.

1. Sum $\lim_{(x, y) \rightarrow (a, b)} (f(x, y) + g(x, y)) = L + M$

2. Difference $\lim_{(x, y) \rightarrow (a, b)} (f(x, y) - g(x, y)) = L - M$

3. Constant multiple $\lim_{(x, y) \rightarrow (a, b)} cf(x, y) = cL$

4. Product $\lim_{(x, y) \rightarrow (a, b)} f(x, y)g(x, y) = LM$

5. Quotient $\lim_{(x, y) \rightarrow (a, b)} \frac{f(x, y)}{g(x, y)} = \frac{L}{M}$, provided $M \neq 0$

6. Power $\lim_{(x, y) \rightarrow (a, b)} (f(x, y))^n = L^n$

7. Root $\lim_{(x, y) \rightarrow (a, b)} (f(x, y))^{1/n} = L^{1/n}$, where we assume $L > 0$ if n is even.

Example - Limit of a function of two variables

Evaluate: $\lim_{(x,y) \rightarrow (2,0)} \frac{x^2 - 3xy^2}{x + y} = \frac{2^2 - 3 \cdot 2 \cdot 0^2}{2 + 0} = \frac{4}{2} = 2$

$x = 2$
 $y = 0$

$\lim_{(x,y) \rightarrow (2,4)} 452 = 452.$

$x = 2$
 $y = 4$

$\lim_{(x,y) \rightarrow (1,1)} \frac{x^2 - y^2}{x - y} = \frac{\frac{x^2 - y^2}{x - y}}{\frac{x - y}{x - y}} = \frac{\frac{(x+y)(x-y)}{x-y}}{1} = \frac{0}{0}$

$\lim_{(x,y) \rightarrow (1,1)} x+y = 1+1 = 2.$

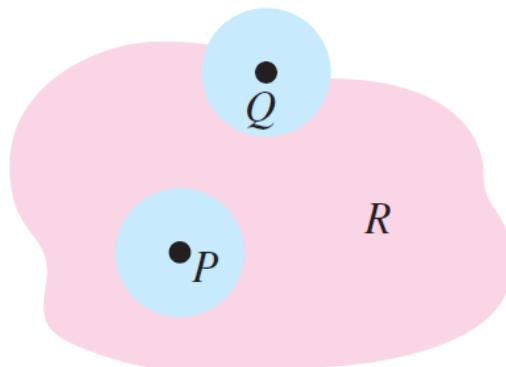
DEFINITION Interior and Boundary Points

Let R be a region in \mathbb{R}^2 . An **interior point** P of R lies entirely within R , which means it is possible to find a disk centered at P that contains only points of R (Figure 15.22).

A **boundary point** Q of R lies on the edge of R in the sense that *every* disk centered at Q contains at least one point in R and at least one point not in R .

Figure 15.22

Q is a boundary point:
Every disk centered at Q
contains points in R and
points not in R .

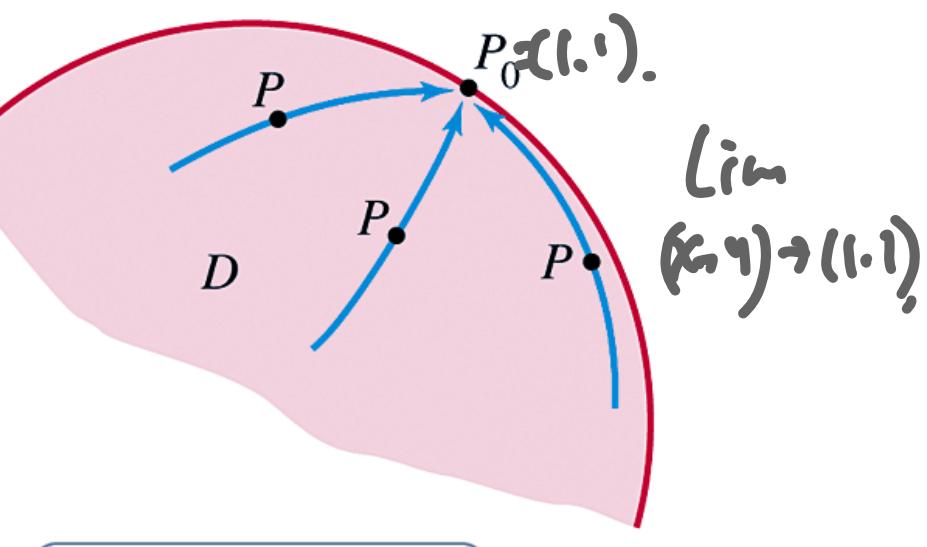


P is an interior point:
There is a disk centered
at P that lies entirely in R .

$$\frac{x^2 - y^2}{x - y}$$

$x=y$ boundary

Figure 15.23



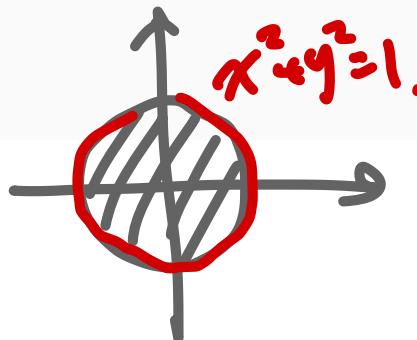
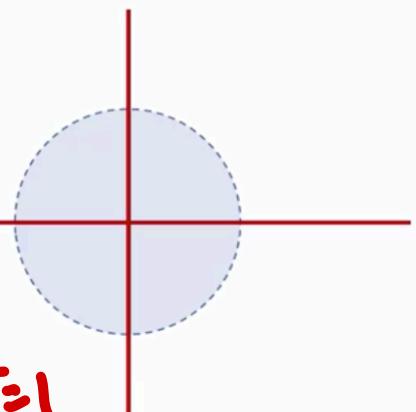
P must approach P_0 along all paths in the domain D of f .

DEFINITION Open and Closed Sets

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

$\{(x, y) : x^2 + y^2 < 1\}$ ← open .

$\{(x, y) : x^2 + y^2 \leq 1\}$ ← closed



Example - Evaluate a limit at boundary point of domain

$$\lim_{(x,y) \rightarrow (-1,1)} \frac{2x^2 - xy - 3y^2}{x + y} = \frac{2 \cdot (-1)^2 - (-1) \cdot 1 - 3 \cdot 1^2}{-1 + 1}.$$

$$= \lim_{(x,y) \rightarrow (-1,1)} \frac{(x+y)(2x-3y)}{(x+y)} = \frac{2+1-3}{0} = \frac{0}{0}.$$

$$= 2(-1) - 3 \cdot 1 = \boxed{-5}$$

$$2x^2 - xy - 3y^2 = (x+y)(2x-3y).$$

$$\begin{matrix} x & y \\ 2x & \cancel{-3y} \end{matrix}$$

$$-3xy + 2x^2 = -xy$$

Example - Limit of a function of three variables

$$\lim_{(x,y,z) \rightarrow (1,1,1)} \frac{x^2 + xy - xz - yz}{x - z} \cdot \frac{1+1 - 1-1}{1-1} = \frac{0}{0}.$$

$$\begin{aligned} x &= 1 \\ y &= 1 \\ z &= 1 \end{aligned}$$

$$\begin{aligned} x^2 + xy - xz - yz &= x(x-z) + y(x-z) \\ &= (x+y)(x-z). \end{aligned}$$

$$\lim_{(x,y,z) \rightarrow (1,1,1)} \frac{(x+y)(x-z)}{(x-z)} = \lim_{(x,y,z) \rightarrow (1,1,1)} (x+y) = 1+1 = 2$$

Example - Nonexistence of limits, Two-Path Test

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^3 + x^3}{xy^2} = \frac{0^3 + 0^3}{0 \cdot 0^2} = \frac{0}{0}.$$

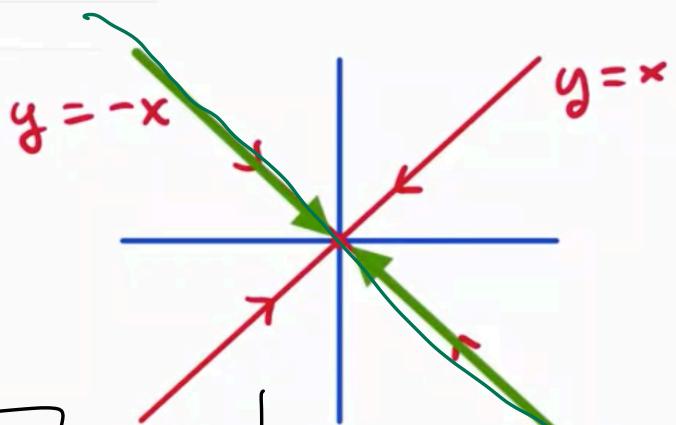
Example - Nonexistence of limits, Two-Path Test

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^3 + x^3}{xy^2}$$

Example - Nonexistence of limits, Two-Path Test

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^3 + x^3}{xy^2}$$

DNE.



① $y=x$

what value

$\frac{y^3 + x^3}{xy^2}$ approach

as $(x,y) \rightarrow (0,0)$ along $y=x$ line?

$$\lim_{y \rightarrow 0} \frac{y^3 + x^3}{xy^2} = \lim_{x \rightarrow 0} \frac{x^3 + x^3}{x x^2} = \lim_{x \rightarrow 0} \frac{2x^3}{x^3} = \lim_{x \rightarrow 0} 2 = 2$$

$y=x$ $y=x$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^3 + x^3}{xy^2} \text{ along } y=-x$$

$$\lim_{y \rightarrow 0} \frac{y^3 + x^3}{xy^2} = \lim_{x \rightarrow 0} \frac{(-x)^3 + x^3}{x(-x)^2} = \lim_{x \rightarrow 0} \frac{0}{x^3} = 0$$

$y=-x$ $y=-x$ $= 0$

② $y=-x$ what value $\frac{y^3 + x^3}{xy^2}$ approach

PROCEDURE Two-Path Test for Nonexistence of Limits

If $f(x, y)$ approaches two different values as (x, y) approaches (a, b) along two different paths in the domain of f , then $\lim_{(x,y) \rightarrow (a,b)} f(x, y)$ does not exist.

$$f(x,y) = \frac{y+x}{y-2x}$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y+x}{y-2x} =$$

Two-path test.

Consider $y = mx$ path. $\{m \neq 2\}$

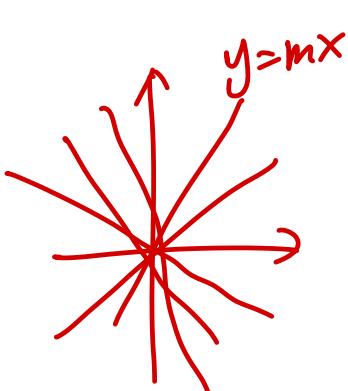
$x, y \rightarrow (0,0)$ along $y = mx$.

$y = 2x$, is not in domain.

$m \neq 2$.

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y+x}{y-2x} = \lim_{x \rightarrow 0} \frac{mx+x}{mx-2x} = \lim_{x \rightarrow 0} \frac{(m+1)x}{(m-2)x}$$

$y = mx$



$$= \lim_{x \rightarrow 0} \frac{m+1}{m-2}$$

$$= \frac{m+1}{m-2}$$

When $m=1$ $\lim = \frac{1+1}{1-2} = \boxed{-2}$

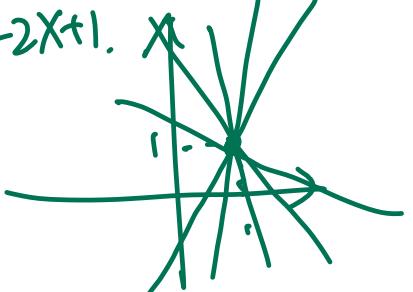
When $m=0$ $\lim = \frac{0+1}{0-2} = \boxed{-\frac{1}{2}}$

DNE.

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y+x+1}{y-2x+1}$$

$$y-2x+1=0.$$

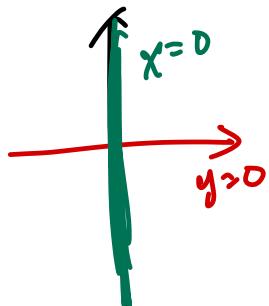
$y = 2x-1$



$$f(x, y) = \frac{y^4 - 2x^2}{y^4 + x^2}$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^4 - 2x^2}{y^4 + x^2}$$

Two-path Test



• what value $f(x, y)$ approach as $(x, y) \rightarrow (0, 0)$ along x -axis? $y=0$ path

$$\lim_{(x,y) \rightarrow (0,0)} \frac{y^4 - 2x^2}{y^4 + x^2} = \lim_{x \rightarrow 0} \frac{0^4 - 2x^2}{0^4 + x^2} = \lim_{x \rightarrow 0} \frac{-2x^2}{x^2} = \lim_{x \rightarrow 0} -2 = \boxed{-2}$$

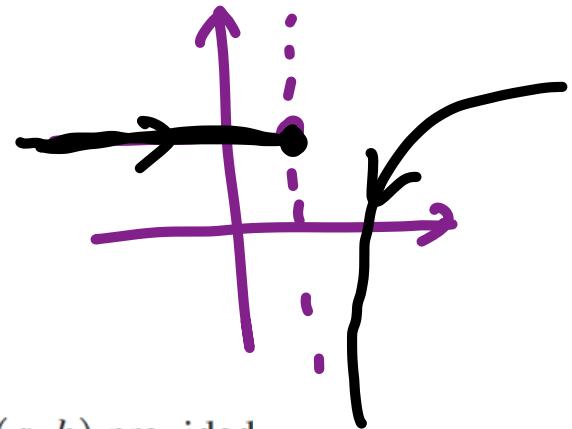
• what value $f(x, y)$ approach as $(x, y) \rightarrow (0, 0)$ along y -axis? $y=0$ path

$$\lim_{\substack{(x,y) \rightarrow (0,0) \\ y=0}} \frac{y^4 - 2x^2}{y^4 + x^2} = \lim_{y \rightarrow 0} \frac{y^4 - 2 \cdot 0^2}{y^4 + 0^2} =$$

$$= \lim_{y \rightarrow 0} \frac{y^4}{y^4} =$$

$$\approx \lim_{y \rightarrow 0} 1 = \boxed{1}$$

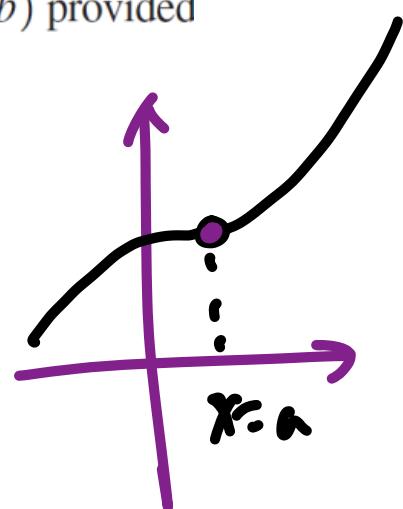
D.N.G.



DEFINITION Continuity

The function f is continuous at the point (a, b) provided

1. f is defined at (a, b) .
2. $\lim_{(x,y) \rightarrow (a,b)} f(x, y)$ exists.
3. $\lim_{(x,y) \rightarrow (a,b)} f(x, y) = f(a, b)$



Example - Determine points of continuity

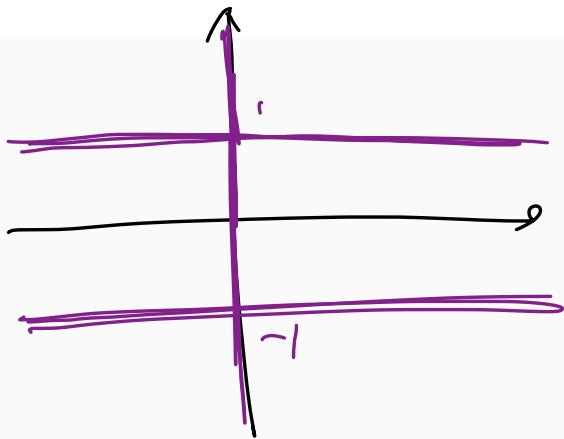
$$f(x, y) = \begin{cases} \frac{x^2 + y^2}{x(y^2 - 1)} & x \neq 0, y \neq 0 \\ 20 & x = 0, y = 0. \end{cases}$$

Domain: $x(y^2 - 1) \neq 0$,

$$x \neq 0 \quad y^2 - 1 \neq 0$$

$$x \neq 0 \text{ and } y \neq \pm 1 \text{ and } y \neq 1$$

$$\lim \frac{x^2 + y^2}{x(y^2 - 1)} \text{ exists.}$$



points $D = \{(x, y) : x \neq 0, y \neq -1, y \neq 1\}$, $f(x, y)$ continuous.

THEOREM 15.3 Continuity of Composite Functions

If $u = g(x, y)$ is continuous at (a, b) and $z = f(u)$ is continuous at $g(a, b)$, then the composite function $z = f(g(x, y))$ is continuous at (a, b) .

Pearson

ALWAYS LEARNING

Copyright © 2019, 2015, 2011 Pearson Education, Inc.

Slide <#>

THEOREM 15.3 Continuity of Composite Functions

If $u = g(x, y)$ is continuous at (a, b) and $z = f(u)$ is continuous at $g(a, b)$, then the composite function $z = f(g(x, y))$ is continuous at (a, b) .

Pearson

ALWAYS LEARNING

Copyright © 2019, 2015, 2011 Pearson Education, Inc.

Slide <#>

e.g.

At what points of \mathbb{R}^2 is the following function continuous?

① $f(x,y) = 2x^2 - 3xy + 4y$.

- All points of \mathbb{R}^2 .

② $p(x,y) = \frac{16x^4y^2}{x^4+y^2}$ $x^4+y^2 \neq 0 \quad (x,y) \neq (0,0)$

- The function is continuous at all points of \mathbb{R}^2 except (0,0).

③ $g(x,y) = \ln(y-2x)$

- All points of \mathbb{R}^2 satisfying the inequality $y-2x > 0$.

15.3 Partial Derivatives

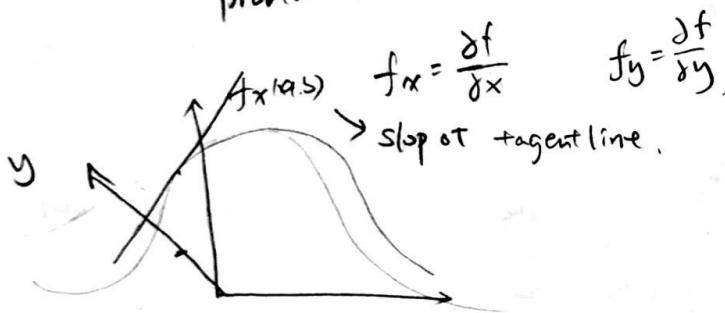
$$f(x, y)$$

Partial derivative of f with respect to x at (a, b) is

$$f_x(a, b) = \lim_{h \rightarrow 0} \frac{f(a+h, b) - f(a, b)}{h}$$

$$f_y(a, b) = \lim_{h \rightarrow 0} \frac{f(a, b+h) - f(a, b)}{h}$$

provided these limits exist.



e.g. $f(x, y) = x + y^2 + 4$

$$f_x(x, y) = 1 \quad f_y(x, y) = 2y$$

e.g. Partial derivatives via differential rules

$$f(x, y) = (3xy + 4y^2 + 1)^5$$

$$f_x(x, y) = 5(3xy + 4y^2 + 1)^4 \underbrace{\frac{\partial}{\partial x} (3xy + 4y^2 + 1)}_{3y+0+0}$$

$$= 5(3xy + 4y^2 + 1)^4 \cdot 3y$$

$$f_y(x, y) = 5(3xy + 4y^2 + 1)^4 \underbrace{\frac{\partial}{\partial y} (3xy + 4y^2 + 1)}_{3x+8y}$$

$$= 5(3xy + 4y^2 + 1)(3x + 8y)$$

Higher order partials

$$(f_x)_x = f_{xx} \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$(f_x)_y = f_{xy} \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} \quad \text{mix partial}$$

$$(f_y)_x = f_{yx} \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

$$\text{eg. } f(x,y) = \cos(xy)$$

$$f_{xx}(x,y) = -y^2 \cos(xy)$$

$$f_{xy}(x,y) = -\sin(xy) - xy \cos(xy)$$

$$f_{yx}(x,y) = -\sin(xy) - xy \cos(xy)$$

$$f_{yy}(x,y) = -x^2 \cos(xy)$$

Thm If f define on D CIR², f_{xy} and f_{yx} are continuous on D

then $f_{xy} = f_{yx}$ on D

$$G(r,s,t) = \sqrt{r s^3 + t^5} = \sqrt{r} \cdot \sqrt{s^3 + t^5} = r^{\frac{1}{2}} \sqrt{s^3 + t^5} = s^{\frac{3}{2}} \sqrt{r + t^5}$$

$$G_r = \frac{1}{2} r^{-\frac{1}{2}} \sqrt{s^3 + t^5} = \frac{1}{2\sqrt{r}} \sqrt{s^3 + t^5} = \frac{1}{2} \sqrt{\frac{s^3 + t^5}{r}}$$

$$G_s = \frac{3}{2} s^{\frac{1}{2}} \sqrt{r + t^5} = \frac{3}{2} \sqrt{r s^5 + t^5}$$

$$G_t = \frac{5}{2} t^{\frac{3}{2}} \sqrt{r s^3} = \frac{5}{2} \sqrt{t^3} \sqrt{r s^3} = \frac{5}{2} \sqrt{r s^3 t^3}$$

$z = f(x, y)$ Differential at (a, b)

Thm - Suppose f has partial derivative f_x and f_y defined on open set D (cont'd)

- with f_x and f_y continuous at (a, b)
- Then f is differentiable at (a, b)

Thm $D \Rightarrow C$

If f is differentiable at (a, b) . Then f is continuous at (a, b)

e.g. $f(x, y) = \begin{cases} \frac{2xy^2}{x+y^4} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$

$\lim_{(x, y) \rightarrow (0, 0)} f(x, y)$ DNE by two path test.

Along $y = x$ $\lim_{x \rightarrow 0} f(x, x) = 0$

Along $x = y^2$ $\lim_{y \rightarrow 0} f(y^2, y) = 1$

\Rightarrow not continuous \Rightarrow not differentiable

But Both f_x & f_y exist at $(0, 0)$

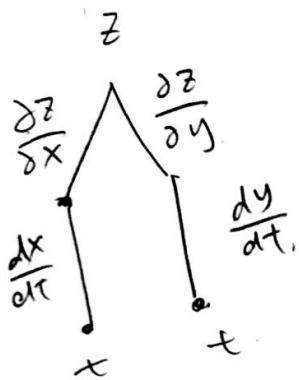
$$f_x(0, 0) = \lim_{h \rightarrow 0} \frac{f(h, 0) - f(0, 0)}{h} = \lim_{h \rightarrow 0} \frac{\frac{0}{h} - 0}{h} = \lim_{h \rightarrow 0} \frac{0}{h} = 0.$$
$$f_y(0, 0) = \lim_{h \rightarrow 0} \frac{f(0, h) - f(0, 0)}{h} = \lim_{h \rightarrow 0} \frac{\frac{0}{h^4} - 0}{h} = \lim_{h \rightarrow 0} \frac{0}{h^3} = 0.$$

15.4

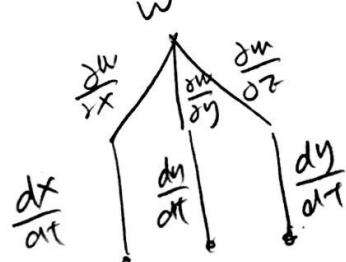
Chain Rule (One Indep Var.)

$$z = f(x, y) \quad x = g(t) \quad y = h(t)$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$



$w = f(x, y, z)$; x, y, z depend on t



$$\frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

e.g. $\frac{dt}{dt}$ for $z = x \sin y$, $x = t^2$, $y = 4t^3$.

$$\frac{\partial z}{\partial x} = \sin y \quad \frac{dx}{dt} = 2t$$

$$\frac{\partial z}{\partial y} = x \cos y \quad \frac{dy}{dt} = 12t^2$$

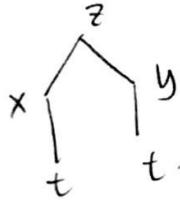
$$\begin{aligned} \frac{dt}{dt} &= \sin y \cdot 2t + x \cos y \cdot (12t^2) \\ &= \sin(4t^3)2t + t^2 \cos(4t^3) \cdot 12t^2 \end{aligned}$$

Chain Rule 15.4

Example Chain Rule (One independent variable: t)

①

① Find: $\frac{dz}{dt}$ where $z = x \sin y$, $x = t^2$, $y = 4t^3$



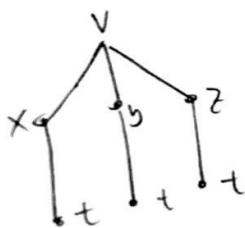
$$\frac{\partial z}{\partial x} = \sin y \quad \frac{\partial z}{\partial y} = x \cos y$$

$$\frac{dx}{dt} = 2t \quad \frac{dy}{dt} = 12t$$

$$\frac{dz}{dt} = (\sin y)(2t) + (x \cos y)(12t)$$

$$= \sin(4t^3) 2t + t^2 \cos(4t^2) \cdot 12t^2$$

② Find $\frac{dv}{dt}$ where $v = xyz$, $x = e^t$, $y = 2t+3$, $z = \sin t$



$$\frac{dv}{dt} = \frac{\partial v}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial v}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial v}{\partial z} \cdot \frac{dz}{dt}$$

$$\frac{\partial v}{\partial x} = yz \quad \frac{\partial v}{\partial y} = xz \quad \frac{\partial v}{\partial z} = xy$$

$$\frac{dx}{dt} = e^t \quad \frac{dy}{dt} = 2 \quad \frac{dz}{dt} = \cos t$$

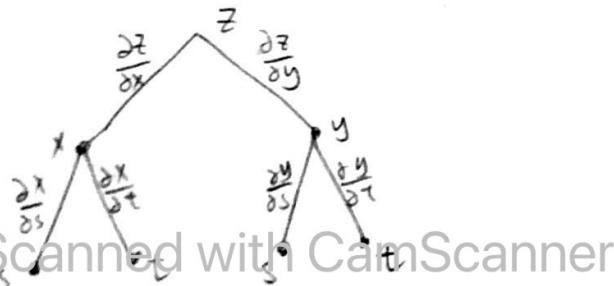
$$\frac{dv}{dt} = yze^t + zxz + xy \cos t$$

$$= (2t+3) \sin t e^t + 2 \sin t e^t + e^t (2t+3) \cos t$$

$$= e^t ((2t+5) \sin t + (2t+3) \cos t)$$

Chain Rule - Two independent variables $z = f(x, y)$, $x = g(s, t)$, $y = h(s, t)$

Thm $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$ and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$



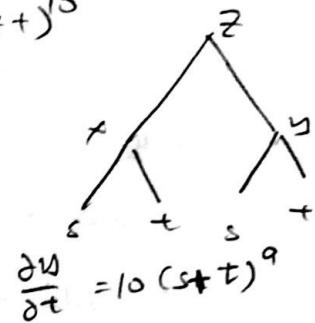
Example: Chain Rule (two independent variables)

②

Find: z_s and z_t , where $z = \sin xy$, $x = s^2t$, $y = (st+t)^9$

$$\frac{\partial z}{\partial x} = y \cos(xy) \quad \frac{\partial z}{\partial y} = x \cos(xy)$$

$$\frac{\partial z}{\partial s} = 2st \quad \frac{\partial x}{\partial t} = s^2 \quad \frac{\partial y}{\partial s} = 10(st+t)^9$$

$$\frac{\partial z}{\partial t} = 10(st+t)^9$$


$$z_s = (y \cos(xy)) (2st) + (x \cos(xy)) (10(st+t)^9)$$

$$= \cos(xy) [2sty + 10 \times (st+t)^9]$$

$$= \cos [s^2t(st+t)^9] [2st(st+t)^9 + 10s^2 + (st+t)^9]$$

$$z_t = (y \cos(xy)) \cdot (s^2) + x \cos(xy) \cdot (10(st+t)^9)$$

Implicit Differentiation

Thm Let F be differentiable on D

$F(x, y) = 0$. y is a differentiable funct. of x

$$F_y \neq 0$$

Then $\frac{dy}{dx} = -\frac{F_x}{F_y}$

$$\therefore \frac{\partial F}{\partial x} \frac{dx}{dx} + \frac{\partial F}{\partial y} \frac{dy}{dx} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx} = 0$$

$$F_x - F_y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{F_x}{F_y}$$

Example : implicit differential

Find $\frac{dy}{dx}$ if $y e^{xy} - 2 = 0$
F(x, y)

sol: $F_x = y^2 e^{xy}$

$F_y = e^{xy} + y x e^{xy}$

$$\Rightarrow \frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{y^2 e^{xy}}{e^{xy} + y x e^{xy}} = -\frac{y^2}{1 + yx}$$

Example Walking on a surface

surface $z = x^2 + 4y^2 + 1$

oriented curve C in xy-plane

$x = \cos t, y = \sin t, 0 \leq t \leq 2\pi$

a) Find $Z'(t)$

b) Imagine walking on surface directly above C in positive orientation.

Find t which you are walking uphill.

$$\begin{aligned} a) \frac{dz}{dt} &= \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} = 2x(-\sin t) + 8y(\cos t) \\ &= -2\cos t \sin t - 8\sin t \cos t \\ &= 10 \cos t \sin t. \end{aligned}$$

b) $\frac{dz}{dt} > 0$

$$10 \cos t \sin t > 0 \quad \text{if } \frac{\pi}{2} < t < \pi$$

$$\frac{3\pi}{2} < t < 2\pi$$

