1.1 Graphs and Level Curves



Functions of Two Variables

DEFINITION Function, Domain, and Range with Two Independent Variables

A function z = f(x, y) assigns to each point (x, y) in a set D in R” a unique real
number z in a subset of R. The set D is the domain of f. The range of f is the set
of real numbers z that are assumed as the points (x, y) vary over the domain.
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Graphs of functions of two variables

A function f assigns to
each point (x, y) in the
domain a real number
M 2= flx ).
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Level Curves

For a function of two variables f(x,y) a level curve is the set of points (x, y) in the
xy-plane where f(x,y) is equal to a constant z,.
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Level Surface

Need 3 dimensions to plot the graph of Need 2 dimensions to plot level curves of

z = f(x,y) z=f(xy)
/

=
4

Need 4 dimensions to plot the graph of Need 3 dimensions to plot level surfaces of
W=f(x.}’;z) W=f(x,y,Z)
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Functions of More Than Two Variables

e Three variables: w = f(x,y, 2)

e nvariables: x,41 = f(x1, %2, ..., Xp)

DEFINITION Function, Domain, and Range with n Independent Variables

The function x, ., = f(x,,x,, ..., x,) assigns a unique real number x, , , to each
point (x, x5, ...,x,)inaset Din R". The set D is the domain of f. The range is
the set of real numbers x, , | that are assumed as the points (x, x,, ..., x,) vary
over the domain.




Level Surface

Need 3 dimensions to plot the graph of Need 2 dimensions to plot level curves of

z = f(x,y) z=f(xy)

Need 4 dimensions to plot the graph of Need 3 dimensions to plot level surfaces of

w=f(x7y2) < w=f(x,y,2)
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Level Surface

For a function of three variables f(x, y, z) a level surface is the set of points (x,y, z) in
xyz-space where f(x,y, z) is equal to a constant wy,.
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Figure 15.20

z=f(x,y)
L+ ¢
L z=L+ &
flx,y) \
L—el

f(x,y)isbetween L — £and L + €
whenever P(x, y) is within & of P,.
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DEFINITION Limit of a Function of Two Variables
The function f has the limit L as P(x, v) approaches P,(a, b), written

lim (x,v) = lim f(x,y) = L,
(v\'._\')_’(a.b)'r( y) P—»p“'f( y)

if, given any € > 0, there exists aé > 0 such that
[flry) — L] <e
whenever (x, y) is in the domain of f and

0 < |PPy| = \/(.\' —a)* + (y — b)* < 6.
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. Figure 15.21
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THEOREM 15.1 Limits of Constant and Linear Functions
Let a, b, and ¢ be real numbers.

1. Constant function f(x,y) = c: lim c¢=c¢c
(x, y)—(a, b)
2. Linear function f(x,y) = x: lim x=ua
(x, )= (a, b)
3. Linear function f(x,y) = y: lim y=25»
(x, y)—(a, b)
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THEOREM 15.2 Limit Laws for Functions of Two Variables

Let L and M be real numbers and suppose ( )hrr% . f(x,y) = Land
x,y)=(a,

: )lm% ) g(x,y) = M. Assume c is a constant, and n > 0 is an integer.
X,y — a,

1. Sum lim (f(x,y) + g(x,y)) =L+ M

(x, y)—(a, b)
2. Difference( )hn% ) (f(x,y) —glx,y)) =L—-M
X,y —(a,
3. Constant multiple lim cf(x,y) = cL
(x,y)—(a, b)

4. Product lim  f(x,y)g(x,y) = LM

(x,y)=(a, b)

fxy) L

5. Quotient lim = —, provided M # 0
(xy)—(ab) g(x,y) M d

6. Power lim ) )t = I
o ) 59)

7. Root : )hn% b)(f(x, y)) " = [}/" where we assume L > 0 if n is even.
X,y —>(a,
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Example - Limit of a function of two variables
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Evaluate: lim x* — 3ay” = 2 - 3.‘2. 0 = /4—
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T’ ; 240 2
g‘.‘- o - Z

a2 42 e

x92 (L4 x-9

’P Pearson ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Sllde (#)



DEFINITION Interior and Boundary Points

Let R be a region in R%. An interior point P of R lies entirely within R, which
means it is possible to find a disk centered at P that contains only points of R
(Figure 15.22).

A boundary point Q of R lies on the edge of R in the sense that every disk
centered at Q contains at least one point in R and at least one point not in R.
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Figure 15.22

Q 1s a boundary point:
Every disk centered at Q
contains points in R and
points not in R.

o
Q
®p

P is an interior point:
There 1s a disk centered
at P that lies entirely in R.
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Figure 15.23
PelY).
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P must approach F,
along all paths in

the domain D of f.
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DEFINITION Open and Closed Sets

A region is open if it consists entirely of interior points. A region is closed if it con-
tains all its boundary points.

((x,y): x2 +y2 < 1} &= We“ .
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Example - Evaluate a limit at boundary point of domain

2 I
2x% — xy — 3y* M .
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Example - Limit of a function of three variables
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Example - Nonexistence of limits, Two-Path Test

3 s
g 0’4 O o
lim S — ._/z- @ amm———
(xy)~(00) Xy 0-0 O .
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Example - Nonexistence of limits, Two-Path Test

. y3 + x3
lim ———
(x,y)—(0,0) Xy
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Example - Nonexistence of limits, Two-Path Test

lim M L& = =3
(x,y)-(0, 0) Xy 2
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PROCEDURE Two-Path Test for Nonexistence of Limits

If f(x,y) approaches two different values as (x, y) approaches (a, b) along two

different paths in the domain of f, then : )llm( . f(x,y) does not exist.
x.y)—(a.b
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DEFINITION Continuity
The function f is continuous at the point (a, b) provided
1. fis defined at (a, b).

2. lim (x, V) exists.
(x.y)—(a.b) f( ’ )

3. lim  f(x,v) = f(a, b
(x,y)—(a.b) ( ) ( ) :
]
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Example - Determinm /F
— (
2 2 %"
YT\ e 9x°
X - = 1 70
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THEOREM 15.3 Continuity of Composite Functions
If u = g(x,y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then
the composite function z = f(g(x, y)) is continuous at (a, b).
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THEOREM 15.3 Continuity of Composite Functions
If u = g(x,y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then
the composite function z = f(g(x, y)) is continuous at (a, b).
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